Tag Archives: education

The Bacterial Allstars

I wrote about Stephen Jay Gould’s book, Wonderful Life, in a previous post. While that book wasn’t an inspiration for starting the LTEE, I often quote passages from it when I give talks on the LTEE, because those passages frame the big-picture question about the repeatability of evolution.

I first heard Gould speak at a multi-day conference in Irvine, California, in 1994. The conference was on Tempo and Mode in Evolution, with the talks celebrating and building upon the ideas in a landmark 1944 book of that same title written by the paleontologist George Gaylord Simpson (1902-1984).

Gould’s talk began with several pictures of dramatic newspaper headlines that read something like these:  Darwin Hammered, Darwin Rejected, and Darwin Trounced Yet Again. I remember nodding in agreement about the lack of respect for Charles Darwin and his ideas in the press, and I’m sure many of the others in attendance did as well.

But then Gould turned the tables to reveal his sly humor. These were all headlines from the sports section of Boston newspapers about ill-fated outings by Danny Darwin, who pitched for the Red Sox. Gould was not only an expert on fossils; he was an aficionado of baseball as well. In fact, he wrote many interesting and scientifically minded essays about baseball including, for example, a memorable piece on the extinction of the .400 hitter in his book Full House. (And see this interview with Gould on that subject.)

I had hoped to meet Gould at this meeting, or at least I hoped he might hear me speak when I gave a talk about the LTEE. (Here’s a link to the paper that I covered in my talk.) Alas, Gould gave his talk and then left the conference before my talk, and before I could meet him.

Luckily, though, I met Gould when he came to MSU, first as a commencement speaker in 1999, and then in 2000 when he gave a public lecture here. On that second visit, I served as one of his hosts. When I picked Gould up at the airport, I brought along two Lansing Lugnuts caps.  The Lugnuts are a local minor-league baseball team. I explained to Gould that I’d have liked to take him to a Lugnuts game, but the season had ended before his visit. I gave him one of the caps, and I asked if would autograph the other cap as a souvenir for me.

Gould hesitated for a moment. He explained he had been asked to autograph books by Darwin and others. He would sign books that he had authored, but nothing else. When he looked at the Lugnuts cap, however, he realized this was a different kind of request. And so, he signed it: “To the bacterial allstars, Stephen Jay Gould.” Now that’s a souvenir!

Gould and I also had the chance to have a meal together, just the two of us. We discussed our shared interest in the repeatability of evolution, and how our disparate study systems—fossils and flasks—could shed light on that fascinating question.

Sadly, Gould died just two years later. However, he managed to complete a massive volume, The Structure of Evolutionary Theory, shortly before his death. That 1400-page tome included a recounting of the history of evolutionary thought—informed by Gould’s collection of rare old books—as well as a synthesis of modern research in evolutionary biology from his perspective.  I was pleased and honored that he discussed the LTEE at several places in that book.

Advertisement

1 Comment

Filed under Old Books, Science

It’s a Wonderful Life

I’ve sometimes been asked whether the idea of the LTEE was inspired by Stephen Jay Gould’s book, Wonderful Life. In this bestseller, Gould put forward the idea of “replaying” evolution to explore the idea of whether evolution is repeatable. He wrote (page 48): “I call this experiment ‘replaying life’s tape.’ You press the rewind button and, making sure you thoroughly erase everything that actually happened, go back to any time and place in the past—say, to the seas of the Burgess Shale. Then let the tape run again and see if the repetition looks at all like the original.”  However, Gould then went on to say: “The bad news is we can’t possibly perform the experiment.”

Gould (1941-2002) was a paleontologist as well as an historian of science and prolific author, and he had in mind replaying life’s tape on a planetary scale over millions of years. The Burgess Shale is a geological formation in western Canada that contains fossils from about 500 million years ago. The fossils include exceptionally well-preserved early animals, many of which have body plans that are unlike any modern animals. Building on his thought experiment of replaying life’s tape, Gould pondered the potential outcomes: “If each replay strongly resembles life’s actual pathway, then we must conclude that what really happened pretty much had to occur. But suppose that the experimental versions all yield sensible results strikingly different from the actual history of life? What could we then say about the predictability of self-conscious intelligence? or of mammals?”

Of course, Gould’s experiment is impossible at a paleo-planetary scale. But at a more modest scale, one of the main goals of the LTEE is to study the repeatability of evolution. And so, I often quote from Wonderful Life when I’m giving talks about the experiment. Thus, it’s only natural that someone might wonder if Gould’s book had inspired me to start the LTEE.

In fact, though, Wonderful Life was published in 1989—a year after the LTEE began. I think I first heard about it when Mike Travisano shared some passages with me that were relevant to a paper we were writing on the roles of adaptation, chance, and history in evolution.

So, while Gould and I were thinking about similar issues, we were imagining them at vastly different scales. It’s one of the fascinating aspects of evolution that these broad categories of causality—adaptation by natural selection, chance events from mutations to asteroid impacts, and the effects of past history on future opportunities—play out at these different scales.

I was lucky to meet Gould and discuss these issues with him several years later, as I’ll describe in a future post.

2 Comments

Filed under Old Books, Science

New Beginnings

Greetings on this winter solstice!  The winter solstice marks a sort of new beginning, as the days become longer for the next half year, before then becoming shorter until the cycle is repeated. 

Every day, the E. coli populations in the long-term evolution experiment (LTEE) experience a cycle of renewed resources and growth followed by depletion of their food and then waiting for the next transfer event. 

On a much longer timescale, the LTEE also experiences cycles as it is passed from one scientific generation to the next. With that in mind, we’ve made a new website that reflects the beginning of the second scientific generation of the LTEE, as the populations and responsibility for their sustenance will soon pass from my lab to that of the new director, Jeff Barrick.

On this website, you can get an introduction and quick overview of the LTEE including how it works, its goals, some of the key findings, and plans for its future.  You can see a timeline of the experiment with some of the milestones and key events in its history.  You can read, watch, and listen to a few of the news stories about the LTEE.  You can find resources including protocols and links to important datasets.  You can search and find links to the publications that report findings from the LTEE itself as well as descendant experiments that have used the LTEE lines. And last, but not least, you can see the talented people who’ve done and are doing the work behind the LTEE, including propagating the populations, performing analyses, analyzing data, and reporting the findings.

We’ve probably missed some papers, and we know that we’re still missing photos for some participants. We’ve also only scratched the surface of reporting past news.  So please let one of us know if you find someone or something LTEE-related that you’d like to see included on this website.  For now, enjoy the new beginnings as seasons and generations continue onward!

Comments Off on New Beginnings

Filed under Education, Science

Revisiting Telliamed

I started this blog, Telliamed Revisited, back in August of 2013, after attending a conference at which a colleague emphasized the value of social media in science.

I recall being questioned on Twitter by someone who expressed skepticism whether my blog would last or quickly be dropped. (Hey, I had already been running the LTEE for a quarter of a century at that point, so you’d think I’d get a little slack.) Anyhow, I said I didn’t really know, and that this blog was a personal experiment in communication.  In any case, I’ve now kept it up for six years, but with only occasional posts … about 100 in total so far.

If you want to follow a regular blog that is focused on science and related issues, I highly recommend Dynamic Ecology.  Jeremy Fox, Meg Duffy, and Brian McGill discuss interesting issues multiple times almost every week.  Impressive!

Anyhow, reflecting on my blog experiment as we head into a new decade, I was interested to see which of my posts had been viewed most often.  Here are the top 10:

Here are five more that are among my own favorites, but which didn’t make the top 10:

Also, if you’re wondering about the name of this blog, see the following post:

Last but not least, Happy New Year—and New Decade—to one and all!

Telliamed

1 Comment

Filed under Education, Science

Coach Izzo and me

Chalk up another great year for the Michigan State men’s basketball team and coach Tom Izzo. The Spartans were co-champions of the Big10 and won the conference’s grueling tournament. And in the NCAA’s March Madness, they made it all the way to the Final Four, knocking out the top-seeded team in the process.

Being a fan of this team got me thinking: Coach and I have a lot in common. We’ve both been doing our jobs, mostly at MSU, for a long time. Coach Izzo came here as a part-time assistant in 1983, becoming head coach in 1995. I was on the faculty at UC-Irvine starting in 1985, before moving here in 1991.

But the real similarities are deeper and more important:

First and foremost, we’ve both been fortunate to be surrounded by talented and hard-working students who listen to our ideas, experiment with them, develop them in their own ways, and translate them into meaningful outcomes—winning big games and making new discoveries.

That’s not to say there aren’t frustrations along the way: games lost, grants and papers rejected, grinding practice on the court and repetition in the lab, and even occasional conflicts. But our students are usually resilient—they overcome those setbacks and frustrations, and they go on to productive lives as players and coaches, researchers and teachers, and other careers as well.

We also both had mentors who helped us start our own careers. In Coach Izzo’s case, one mentor was Jud Heathcote, the previous head coach who hired him as an assistant. My mentors included my doctoral advisor, Nelson Hairston, and my postdoctoral supervisor, Bruce Levin. Coach Izzo and I also had friends who helped shape our careers early on: Steve Mariucci, who went on to become an NFL coach; and Phil Service, who did important work on life-history evolution.

Coach Izzo and I also both benefitted, I think, from early successes—again, largely due to our students—that helped establish our reputations, allowing us to retain our jobs and thrive by recruiting more talented, hard-working students. For Tom Izzo, it was players like Mateen Cleaves, Charlie Bell, and Mo Peterson who took the Spartans to the Sweet 16 in his 3rd year as head coach and to the Final Four the next year, and who won the 1999-2000 National Championship. For me, the early students included Judy Bouma, Felisa Smith, John Mittler, Mike Travisano, Paul Turner, and Farida Vasi, and postdocs Toai Nguyen and Valeria Souza.

Coach Izzo has also had assistant coaches and staff, who I imagine do a lot of the heavy lifting. While some might eventually become head coaches of their own teams, many others labor in relative obscurity. In a similar vein, I’ve had outstanding lab managers including Sue Simpson, Lynette Ekunwe, and—for over 20 years, before retiring last year—Neerja Hajela.

Coach Izzo and I have both had deep benches—students who helped the team succeed without being in the limelight themselves. For Coach Izzo, they include the walk-ons and others who see limited action in games, but who compete against the starters every day in practice, helping everyone become even better. I think of three undergraduates who joined my lab when it was just getting started in Irvine (all Vietnamese refugees, by the way) who asked if they could work in my lab. Trinh Nguyen, Quang Phan, and Loan Duong prepared media and performed experiments like some incredible three-brained, six-handed machine, setting a high standard for everyone who followed in their footsteps.

Coach Izzo and I are nearly the same age. Retirement might be easier, but neither of us is ready for that. It’s too much fun when you’ve got talent to encourage and guide like Cassius Winston, Joshua Langford, Nick Ward, Xavier Tillman, and Aaron Henry—and on my team Jay Bundy, Kyle Card, Nkrumah Grant, Minako Izutsu, and Devin Lake.

Of course, there’s more that Coach Izzo and I have in common—we were lucky to be born into circumstances that allowed us to pursue our dreams without the obstacles that many others face.

Last but not least, Coach Izzo and I have had supportive partners who’ve accepted our peculiar obsessions and the long hours and frequent travel that our work entails.

Go Green! Go Students!!

Comments Off on Coach Izzo and me

Filed under Education, Science

Is the LTEE breaking bad?

Michael Behe has written a third book, Darwin Devolves, that continues his quixotic effort to overturn evolutionary biology. Nathan Lents, Joshua Swamidass, and I wrote a book review for Science. (You can find an open-access copy here.) As our short review states, there are indeed many examples of evolution in which genes and their functions have been degraded, sometimes conferring an advantage to the organism. However, Behe’s book largely ignores the ways by which evolution generates new functions. That’s a severe problem because Behe uses the evidence for the ease of gene degradation to support his claim that our current understanding of the mechanisms of evolution is inadequate.

This is my third in a series of posts delving into various issues where I think Behe’s logic and evidence are weak. These weaknesses undermine his position that the known mechanisms of evolution are inadequate to explain life as we see it in the fossil record and in the diversity of living species. Let me be clear: there is still much to learn about the intricacies of how evolution works, both in terms of a better understanding of the general mechanisms and unraveling all the fascinating particulars of what happened along various lineages. However, I don’t see much chance of future research upending the central role of natural selection—operating over vast time along with mutation, drift, and recombination (including various forms of horizontal gene transfer)—in creating new functions that spark the diversification of life. By contrast, Behe accepts that natural selection occurs, but he treats it almost entirely as a degradative process that weakens and destroys functions. To explain all the new functions that have arisen during evolution (and he accepts the fact that evolution has occurred for billions of years), Behe appeals to an “intelligent agent” who somehow, mysteriously has added new genetic information into evolving lineages.

In my first post, I explained why Behe’s “first rule of adaptive evolution” doesn’t imply what he says it does about evolution writ large. In particular, his overarching thesis confuses frequency over the short run with lasting impact over the long haul of evolution. In my second post, and building on the work of others, I examined a specific case involving polar bears, which Behe argued showed adaptations resulting from degradative evolution. He apparently regarded the case as so compelling that he used it as the lead example in his book, but a careful review of the science suggests an alternative explanation, in which gene function actually improved.

In this post, I examine Behe’s interpretation of findings from a long-term evolution experiment (LTEE) with E. coli bacteria that has been running in my lab for over 30 years. In short, the LTEE represents an ideal system in which to observe degradative evolution, and indeed we’ve seen examples of such changes. However, Behe overstates his case by downplaying or dismissing evidence that runs counter to his thesis.

III. Evolution of functionality in the LTEE

Recall what Behe calls “the first rule of adaptive evolution: break or blunt any functional gene whose loss would increase the number of a species’ offspring.” In support of that rule, Darwin Devolves pays considerable attention to the LTEE. Behe skillfully uses it to build his case that unguided evolution produces adaptations (almost) exclusively by breaking or blunting functional genes. The implication is that constructive adaptations—those that do not involve breaking or blunting genes—require an “intelligent agent” who has introduced new genetic information, by some mysterious process, into certain lineages over the course of life’s history.

Am I surprised that Behe uses the LTEE as one of the centerpieces of Darwin Devolves? No, not at all. Does the LTEE provide strong support for his argument? No, it does not. The LTEE fits the bill for Behe because it’s just about the best case possible to showcase his rule. But just as loss of sight in cave-dwelling organisms is a special case that won’t tell us how eyes evolved, one must be careful when extrapolating from this experiment to evolution writ large. (I say this even though the LTEE is my scientific “baby” and has been a useful model system for studying some aspects of evolution.)

The LTEE was designed (intelligently, in my opinion!) to be extremely simple in order to address some basic questions about the dynamics and repeatability of evolution, while minimizing complications. It was not intended to mimic the complexities of nature, nor was it meant to be a test-bed for the evolution of new functions. The environment in which the bacteria grow is extremely simple. The temperature is kept constant at 37C, the same as our colons where many E. coli live. The LTEE “host” is an Erlenmeyer flask, not an animal with an immune system and other defenses. There are no antibiotics present, no competing species, and no viruses that plague bacteria in nature. And the culture medium contains a single source of energy that the ancestral bacteria can use, namely the sugar glucose. In contrast, E. coli lineages have endured and adapted over millions of years to countless combinations of resources, competitors, predators, toxins, and temperatures in nature.

Indeed, the LTEE environment is so extremely simple that one might reasonably expect the bacteria would evolve by breaking many existing functions. That is because the cells could, without consequence, lose their abilities to exploit resources not present in the flasks, lose their defenses against absent predators and competitors, and lose their capacities to withstand no-longer-relevant extreme temperatures, bile salts, antibiotics, and more. The bacteria might even gain some advantage by losing these functions, if doing so saved time, energy, or materials that the cells could better use to exploit the limited glucose supply.

And just as one would expect, the bacteria have diminished or lost various abilities during the LTEE. For example, all 12 populations lost the ability to use another sugar, called ribose, and they gained a small but measurable competitive advantage as a result. Similarly, half of the lines evolved defects in one or another of their DNA repair systems, which led to hypermutability. While hypermutability resulted from a loss of function at the molecular level, it produced a slight gain in terms of the rate at which those lineages adapted to their new laboratory environment. There are undoubtedly many functional losses that have occurred during the LTEE, some that have been described and others not.

If that was all there were to the story, I might say that Behe’s portrayal was correct, but that he had missed the point—namely, that of course evolution often involves the loss of functions that are no longer useful to the organism. Biologists have known and understood this since Darwin.

But there is more to evolution than that, not only in nature but, as it turns out, even in the simple world of the LTEE. We’ve discovered cases where beneficial mutations evolved in genes that encode proteins that are essential, not dispensable, including ones involved in synthesis of the cell envelope and in structuring DNA so that it can be copied, transcribed, and packed into the tiny space of a cell. We’ve also found genes in which mutations occur repeatedly near key interfaces of the encoded proteins, in ways that imply the fine-tuning of protein functions to the LTEE environment, rather than degradation or loss of those functions.

In Darwin Devolves, Behe asserts (p. 344) that “it’s very likely that all of the identified beneficial mutations worked by degrading or outright breaking the respective ancestor genes.” He includes a footnote that acknowledges our work that suggests the fine-tuning of some protein functions, but there he writes (p. 609): “More recent investigation by Lenski’s lab suggests that mutations in a small minority (10 of 57) of selected E. coli genes may not completely break them but rather, as they put it, ‘fine-tune’ them (probably by degrading their functions).” Why does Behe assert that fine-tuning of genes occurred “probably by degrading their functions”?

Perhaps it’s because this assertion supports his claim, but more charitably I suspect the underlying reason is similar to the problematic inferences that got Behe into trouble in the case of the polar bear’s genes. That is, if one assumes the ancestral state of a gene is perfect, then there’s no room for improvement in its function, and the only possible functional changes are degradative. In my post on the polar bear case, I explained why the assumption that a gene is perfect (or nearly so) makes sense in certain situations. However, that assumption breaks down when an organism encounters a new environment, where the optimal state of a protein might differ from what it was before. Perhaps, for example, a mutation that would have slightly reduced an essential protein’s activity in the ancestral environment slightly improves its activity in the new environment. As I explained earlier, the LTEE environment differs from the conditions that E. coli experienced before being brought into the lab. It would be surprising if some proteins couldn’t be fine-tuned such that their activities were improved under the particular pH, temperature, osmolarity, and other conditions of the LTEE. It is unreasonable to simply assume that fine-tuning mutations “probably” degrade functions when evolving populations—whether of bacteria or bears—encounter new conditions.

The adaptation in the LTEE that has garnered the most public attention, though, is far less subtle. (The attention grew enormously after I had an email exchange with Andrew Schlafly, who runs the “Conservapedia” website.) After more than 30,000 generations, one of the 12 lines evolved the ability to consume citrate in an oxygen-rich environment—something that E. coli normally cannot do. Citrate, it turns out, has been a potential source of carbon and energy in the culture medium ever since the LTEE started. (The citrate is there, despite the inability of E. coli to import it from the medium, because it chelates iron and, in so doing, makes that micronutrient available to the cells.)

Sequencing the genomes of the citrate-using lineage revealed an unusual mutation—a physical rearrangement that brought together regulatory and protein-coding sequences in a new way—and genetic experiments demonstrated that mutation was responsible for this gain of function. In the line that gained the ability to consume citrate, the rearrangement involved duplicating a particular DNA segment; additional experiments showed that other types of rearrangements could also generate this ability. Even now, after more than 70,000 generations, none of the other LTEE populations has managed to evolve this new ability, despite its great benefit to the bacteria. This difficulty reflects several factors: (i) the low rate of occurrence of the necessary rearrangement mutations; (ii) the fact that efficient use of citrate requires certain additional mutations; and (iii) the absence of other, more highly beneficial mutations that could out-compete early, weakly beneficial citrate-using mutants.

To his credit, Behe does write about the lineage that evolved the ability to consume the citrate. However, he dismisses it as a “sideshow” (p. 365), because he refuses to call this new capability a gain of function. Instead, Behe writes (p. 362) that under his self-fulfilling scheme “the mutation would be counted as modification-of-function—because no new functional coded element was gained or lost, just copied.” In other words, Behe won’t count any newly evolved function as a gain of function unless some entirely new gene or control region “poofs” into existence.

But that’s not how evolution works—unless you believe, as Behe apparently does, that God or some other “intelligent agent” intervened to insert new genetic information into various lineages during the course of history. (Suffice it to say that I don’t regard this as a scientifically useful hypothesis, because I don’t think it can be tested.) Evolutionary biology doesn’t require that new genes poof into existence. Instead, old genes and their products are coopted, modified, and used in new ways—a process called exaptation. For example, crystallin proteins in the lenses of our eyes derive from proteins that performed other functions. At a larger physical scale, the wings of birds and bats derive from the forelimbs of their four-legged ancestors, which in turn derive from fins of fishes.

In short, Darwin Devolves presents a biased picture of the LTEE’s findings. Behe is overly confident in asserting that the vast majority of beneficial mutations have degraded functions, when the functional effects of most of these mutations have not been measured under relevant conditions. In any case, the experiment was designed to address issues other than molecular functionality, with the environment deliberated constructed to be as simple as possible. And yet, having closed the door on nearly all opportunities for new functions to evolve, a striking example arose in a tiny flask after a mere decade or two.

[This image shows some of the LTEE populations in their flasks. The one in the center is more turbid because the bacteria have reached a higher density after they evolved the ability to consume citrate in the culture medium.  Photo credit: Brian Baer and Neerja Hajela.]

LTEE lines centered on citrate #11

10 Comments

Filed under Education, Science

Reply to Michael Behe’s gentle comment

Michael Behe posted a kind, brief comment on my previous post. As I began to write my reply, I realized his comment and my reply would interest many readers, and hence this separate post.

Here is his comment, and my reply follows.

Behe comment 18-Feb-2019

Good day, Mike (if I may): Thank you for your kind words. I do appreciate the fact that you remain upbeat about my lab’s research, and much other work that you describe in your writings, even though I disagree with the “big picture” that you take from the evolution literature.

I find it interesting and personally enjoyable (despite some frustrations as well) that evolution remains such a “hot” topic. That’s true scientifically, with many extraordinary discoveries in recent years—from fossils like Tiktaalik and Archaeopteryx [edit: this one was discovered long ago, but it’s better understood now] to the DNA-based evidence that Denisovans and Neanderthals contributed to the genomes of many of us living today. It’s also the case that evolution remains “hot” for many non-scientists, and that’s wonderful. Whether for secular or religious reasons, we humans are deeply interested in where we came from and how we came about. In my own small way, I take pleasure in knowing that my lab’s research helps people get a glimpse of how evolution works.

I’m concerned, though, when these scientific and religious perspectives get intertwined and confused, even when they concern those big, important questions that interest all of us. I get even more concerned when I see what I regard as non-scientific ideas (such as “intelligent agents” introducing “purposeful design” by unstated and untestable means) being used to undermine the admittedly imperfect (and always subject to revision) understanding of evolution that science provides to those who want to learn. And I am most disturbed when these confusions appear to be part of a deliberate “wedge” strategy with ulterior sociopolitical motives. People will undoubtedly have diverse views about whether scientific explanations are adequate and/or satisfying ways to understand the world, but I see danger in trying to undermine scientific methodology and reasoning to advance religious beliefs and political goals.

11 Comments

Filed under Education, Science