A Blast from the Past

Sometimes you need a thick skin to be a scientist or scholar. Almost everyone, it seems, has encountered a reviewer who didn’t bother to read what you wrote or badly misunderstood what you said.

In other cases, you realize on reflection that a reviewer’s criticisms, although annoying and even painful at first, are justified in whole or in part. Addressing the reviewer’s criticisms helps you improve your paper or grant. That’s been my experience in most cases.

Sometimes, though, a reviewer just doesn’t like your work. And occasionally they can be pretty nasty about it. Here’s a case that I experienced on submission of the first paper about the Long-Term Evolution Experiment.

{You can click on the image of the review to enlarge it.}

Rev 1 of 1991 LTEE

A few choice lines:

“This paper has merit and no errors, but I do not like it …”

“I feel like a professor giving a poor grade to a good student …”

“The experiment is incomplete and the paper seriously premature …”

“I am upset because continued reliance on statistics and untested models by population geneticists will only hasten the demise of the field.”

“Since the Deans of Science at most universities can only count and not read, I can fully appreciate the reasons for trying to publish this part of the work alone.”

“Molecular biology … should be used whenever possible because molecular biologists control the funding and most of the faculty appointments.”

I’ve occasionally shared this with members of my lab when they get difficult reviews to remind them that it’s not the end of the world or their career, or even the paper that has been scorched.

PS The revised paper was accepted by The American Naturalist. In fact, it won the best-paper award there for the year in which it was published. It has also been cited hundreds of times.

7 Comments

Filed under Education, Science

On the Evolution of Citrate Use

Those who follow the long-term evolution experiment (LTEE) with E. coli know that the most dramatic change we have observed to date is the origin of the new ability to grow on citrate. It’s dramatic for several reasons including the fact (external to the LTEE) that E. coli has been historically defined as a species based in part on its inability to grow on citrate in oxic environments and the fact (internal to the LTEE) that it was so difficult for the bacteria to evolve this ability that only one of the populations did so, and that it took over 30,000 generations even though an abundance of citrate has been present in the medium throughout the LTEE. Even after 64,000 generations, only the Ara–3 population has evolved that new ability.

Zachary Blount, formerly a graduate student and now a postdoc in my lab, has spent the last decade studying the evolution of this population and its new ability. His two first-authored papers in PNAS (2008) and Nature (2012) demonstrated, respectively, that (i) the origin of the ability to grow on citrate in the LTEE was contingent on one or more “potentiating” mutations that happened before the “actualizing” mutation that conferred the new function first appeared, and (ii) the actualizing mutation was a physical rearrangement of the DNA that brought together a structural gene, citT, that encodes a transporter and a previously unconnected regulatory region to generate a new module that caused the phenotypic transition to Cit+. These papers presented and discussed much more than these two points, of course, but they are the key findings. More recently, Zack was a coauthor on a paper in eLife (2015) by Erik Quandt, Jeff Barrick, and others that identified two mutations in the gene for citrate synthase—one that potentiated the evolution of citrate utilization, and another that subsequently refined that new function.

So we were keenly interested when we saw a new paper titled “Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA” by Dustin Van Hofwegen, Carolyn Hovde, and Scott Minnich. The paper is posted online as an accepted manuscript by the Journal of Bacteriology. What follows here are some overall impressions of their paper that Zack and I put together. We may follow these impressions later with some further analysis and comments.

* * * * *

Let’s begin by saying that it’s great to see other groups working on interesting systems and problems like the evolution of citrate utilization in E. coli.

Moreover, the actual science that was done and reported looks fine and interesting, though we have a few quibbles with some details that we will overlook for now. By and large, the work confirms many of the findings that were reported in our papers cited above:

(i) the ability to grow on citrate in the presence of oxygen can and does evolve in E. coli (Blount et al., 2008);

(ii) when aerobic growth on citrate evolves, it does not do so quickly and easily (Blount et al., 2008) but instead takes weeks or longer—more on that below;

(iii) all strains that have evolved this new ability have physical rearrangements that involve the citT gene and appear also to involve a so-called “promoter capture” whereby a copy of this transporter-encoding gene acquires a new upstream regulatory region (Blount et al., 2012); and

(iv) genetic context matters—the strain one uses affects the likelihood of evolving the Cit+ function (Blount et al., 2008) and the resulting ability to grow on citrate (Blount et al., 2012; Quandt et al., 2015).

The problem, then, is not with the experiments and data. Rather, the problem is that the results are wrapped in interpretations that are, in our view, flawed and fallacious.

“No new genetic information”

The authors assert repeatedly (last sentence of their Importance statement, and first and last paragraphs of their Discussion) that “no new genetic information evolved.” However, that statement flatly contradicts the fact that in their experiments, and ours, E. coli gained the new ability to grow on citrate in the presence of oxygen. We would further add (which we have not emphasized before) that these Cit+ strains can grow on citrate as a sole carbon source—when E. coli grows anaerobically on citrate, it requires a second substrate for growth in order to use the citrate (a phenomenon called “co-metabolism”).

The claim that “no new genetic information evolved” is based on the fact that the bacteria gained this new ability by rearranging existing structural and regulatory genetic elements. But that’s like saying a new book—say, Darwin’s Origin of Species when it first appeared in 1859—contains no new information, because the text has the same old letters and words that are found in other books.

In an evolutionary context, a genome encodes not just proteins and patterns of expression, but information about the environments where an organism’s ancestors have lived and how to survive and reproduce in those environments by having useful proteins, expressing them under appropriate conditions (but not others), and so on. So when natural selection—that is, differential survival and reproduction—favors bacteria whose genomes have mutations that enable them to grow on citrate, those mutations most certainly provide new and useful information to the bacteria.

That’s how evolution works—it’s not as though new genes and functions somehow appear out of thin air. As the bacterial geneticist and Nobel laureate François Jacob wrote (Science, 1977): “[N]atural selection does not work as an engineer works. It works like a tinkerer—a tinkerer who does not know exactly what he is going to produce but uses whatever he finds around him, whether it be pieces of string, fragments of wood, or old cardboards; in short, it works like a tinkerer who uses everything at his disposal to produce some kind of workable object.”

To say there’s no new genetic information when a new function has evolved (or even when an existing function has improved) is a red herring that is promulgated by the opponents of evolutionary science. In this regard, it seems relevant to point out that the corresponding author, Scott Minnich, is a fellow of the Discovery Institute and was an expert witness for the losing side that wanted to allow the teaching of “intelligent design” as an alternative to evolution in public schools in the landmark Kitzmiller v. Dover case.

“Rapid evolution of citrate utilization”

In the title of their paper and throughout, Van Hofwegen et al. emphasize that, in their experiments, E. coli evolved the ability to grow aerobically on citrate much faster than the 30,000 generations and ~15 years that it took in the LTEE. That’s true, but it also obscures three points. First, we already demonstrated in replay experiments that, in the right genetic background and by plating on minimal-citrate agar, Cit+ mutants sometimes arose in a matter of weeks (Blount et al. 2008). Second, rapid evolution of citrate utilization—or any evolution of that function—was not a goal of the LTEE. So while it is interesting that Van Hofwegen et al. have identified genetic contexts and ecological conditions that accelerate the emergence of citrate utilization (as did Blount et al., 2008), that in no way undermines the slowness and rarity of the evolution of this function in the context of the LTEE (or, for that matter, the rarity of Cit+ E. coli in nature and in the lab prior to our work). Third, the fastest time that Van Hofwegen et al. saw for the Cit+ function to emerge was 19 days (from their Table 1), and in most cases it took a month or two. While that’s a lot faster than 15 years, it’s still much longer than typical “direct selections” used by microbiologists where a readily accessible mutation might confer, for example, resistance to an antibiotic after a day or two.

So while we commend the authors’ patience, we do not think the fact that their experiments produced Cit+ bacteria faster than did the LTEE is particularly important, especially since that was not a goal of the LTEE (and since we also produced them much faster in replay experiments). However, in a manner that again suggests an ulterior nonscientific motive, they try to undermine the LTEE as an exemplar of evolution. The final sentence of their paper reads: “A more accurate, albeit controversial, interpretation of the LTEE is that E. coli’s capacity to evolve is more limited than currently assumed.” Alas, their conclusion makes no logical sense. If under the right circumstances the evolution of citrate utilization is more rapid than it is in the LTEE, then that means that E. coli’s capacity to evolve is more powerful—not more limited—than assumed.

“Speciation Event”

To us, one of the most interesting facets of the evolution of the citrate-using E. coli in the LTEE is its implications for our understanding of the evolutionary processes by which new species arise. Part of the reason for this interest—and the one that’s most easily stated in a popular context—is that the inability to grow on citrate is part of the historical definition for E. coli as a species, going back almost a century. But the deeper interest to us lies not in labeling a new species or debating where to draw the line between species—various criteria are used by different scientists, and inevitably there are many cases that lie in grey areas. Rather, as evolutionary biologists, we are most interested in the process of speciation—the ecological and genetic dynamics that lead to changing biological forms that, over time, are more and more like a new species until, eventually, perhaps far in the future, there is no doubt that a new species has evolved.

In short, speciation is not an event. As Ptacek and Hankison (2009, in Evolution: The First Four Billion Years) put it, “[S]peciation is a series of processes, with a beginning stage of initial divergence, a middle stage wherein species-specific characteristics are refined by various forces of evolution, and an end point at which a new species becomes a completely separate evolutionary lineage on its own trajectory of evolutionary change with the potential for extinction or further diversification into new lineages.” We realize that scientists (ourselves included) often use shorthand and jargon instead of writing more carefully and precisely. We have no doubt that one can find solid scientific papers that talk about speciation events; but except for cases that involve hybridization leading to polyploids that are reproductively isolated in a single generation (as sometimes occurs in plants), this is simply an imprecise shorthand.

In our first paper on the citrate-using E. coli that arose in the LTEE, we clearly emphasized that becoming Cit+ was only a first step on the road to possible speciation (Blount et al., 2008). One criterion that many biologists would apply to investigate speciation is whether a later form merely replaced an earlier form (evolution without speciation) or, alternatively, one lineage split into two lineages that then coexisted (incipient speciation). In fact, we showed that, after the new function evolved, the Cit+ and Cit lineages coexisted (and their coexistence was confirmed using genomic data in Blount et al., 2012). We concluded the 2008 paper by asking explicitly: “Will the Cit+ and Cit– lineages eventually become distinct species?” (emphasis added) and discussing how we might assess their ongoing divergence.

By contrast, Van Hofwegen et al. dismiss the idea of speciation out of hand, not only by calling it an event but by treating the issue as though it hinges, literally, on the individual mutations that produced a Cit+ cell. For example, they write: “[B]ecause this adaptation did not generate any new genetic information … generation of E. coli Cit+ phenotypes in our estimation do not warrant consideration as a speciation event.” And in the penultimate sentence of their paper, they say: “[W]e argue that this is not speciation any more than any other regulatory mutant of E. coli.” (We also note that this is a rather bizarre generalization, as though the gain of function that gave access to a new resource is equal in regards to its speciation potential to, say, the loss of regulation of a function that is no longer used by a lineage in its current environment. Both might well be adaptations, but one seems much more likely to begin the process of speciation.)

In conclusion, Van Hofwegen, Hovde, and Minnich have done some interesting experiments that shed further light on the nature of the mutations and ecological conditions that allow E. coli cells to evolve the ability to grow aerobically on citrate, a function that this species cannot ordinarily perform. However, they misunderstand and/or misrepresent the relevance of this system for evolutionary biology in several important respects. 

And the meaning of historical contingency

The paper by Hofwegen et al. is accompanied by a commentary by John Roth and Sophie Maisnier-Patin. Their abstract begins: “Van Hofwegen et al. demonstrate that E. coli rapidly evolves ability to use citrate when long selective periods are provided. This contrasts with the extreme delay (15 years of daily transfers) seen in the long-term evolution experiments of Lenski and coworkers. Their idea of ‘historical contingency’ may require reinterpretation.”

Historical contingency is a complicated notion, but it essentially means that history matters. In Blount et al. (2008), we made it clear what we mean by historical contingency in the context of the evolution of the Cit+ lineage in one of the LTEE populations. Was this an extremely rare event that could have happened at any time? Or did it instead depend on the occurrence of a sequence of events, a particular history, whereby an altered genetic context evolved—a potentiated background—in which this new function could now evolve?

Roth and Maisnier-Patin’s suggestion that our idea of “historical contingency” may require reinterpretation reflects a false dichotomy between historical contingency, on the one hand, and the effects of different selection schemes, on the other. The fact that evolution might be fast and not contingent on genetic background (though the evidence of Van Hofwegen et al. is, at best, ambiguous in this regard) in one set of circumstances has no bearing on whether it is contingent in another set of circumstances. The historical contingency of Cit+ evolution is not mere conjecture. We showed that the evolution of this new function in the LTEE was contingent. In replay experiments, Blount et al. (2008) showed that that the Cit+ trait arises more often in later-generation genetic backgrounds than in the ancestor or early-generation backgrounds. Moreover, Blount et al. (2012) performed genetic manipulations and showed that a high-copy-number plasmid carrying the evolved module that confers the Cit+ function had very different phenotypic effects when put in a Cit clone from the lineage within which Cit+ evolved than when placed in the ancestor or even other late-generation lineages not on the line of descent leading to the emergence of the Cit+ bacteria. In the clone on the line of descent, this module conferred strong, immediate, and consistent growth on citrate. In the other genetic backgrounds, growth on citrate was weak, delayed, and/or inconsistent.

The hypothesis of historical contingency is not mutually exclusive with respect to causal factors of an ecological or genetic nature—it simply says that factors that changed over time were important for the eventual emergence of Cit+. Moreover, historical contingency was invoked and demonstrated in a specific context, namely that of the emergence of Cit+ in the LTEE—it does not mean that the emergence of Cit+ is historically contingent in other experimental contexts, nor for that matter that other changes in the LTEE are historically contingent—in fact, some other evolved changes in the LTEE have been highly predictable and not (or at least not obviously) contingent on prior mutations in the populations (e.g., Woods et al., PNAS, 2006). [For more on historical contingency and the LTEE, you can download a preprint of Zack’s latest paper from his website: Blount, Z. D. A Case Study in Evolutionary Contingency. Studies in the History and Philosophy of Biology and Biomedical Sciences.]

Erik Quandt offers this analogy to illustrate our point that contingency depends on context: “It’s kind of like the difference between being an average person attempting to dunk a basketball when all by yourself, with unlimited time, and maybe even with a trampoline versus having to get to the rim in a game with LeBron James and the Cavs playing defense. Just because you can do it by yourself under optimal conditions, does this negate the difficulty of doing it in an NBA game or say anything about the kind of history (training and/or genetics) that you would need for that situation?”

* * * * *

LTEE lines centered on citrate #11

7 Comments

Filed under Education, Science

When We’re Sixty Four (Thousand)

From the E. coli in the LTEE to the People of the Lab

[To be sung along to this Beatles classic]

 

When we get older, losing our fimbriae,

Many years from now,

Will you still be sending us our thiamine,

Birthday greetings, Erlenmeyer wine?

If we were mutants, crazy and fit,

Would that make you snore?

Will you still feed us, will you still freeze us,

When we’re sixty-four?

 

You’ll be older too,

And if you say the word,

We’ll evolve with you.

 

We could be handy, helping your pubs,

When your grants are gone.

You can write a paper by the fireside,

Weekend days give no time to hide.

Colonies growing, dotting the plates,

Who could ask for more?

Will you still feed us, will you still freeze us,

When we’re sixty-four?

 

Every summer you can buy a freezer when the space gets tight,

If it’s not too dear.

Save our clonal mix,

Plus and minus progeny,

Ara One to Six.

 

Keeping the notebook, pipetting each drop,

Track trajectories.

Indicate precisely what you think will change.

Hypothesize, test, unlimited range.

Give us your data, sequence and store,

Evolving evermore.

Will you still feed us, will you still freeze us,

When we’re sixty-four?

 

2 Comments

Filed under Education, Humor, Science, Uncategorized

Bacterial Niche Finally Defined

The following scholarly contribution comes from my wife Madeleine Lenski after conversing with her “sister” (my former postdoc) Valeria Souza.

For those with an itch for criteria,

Scratch this: What’s a niche for bacteria?

Don’t take me to task

If I answer “a flask” –

It’s a bitch from warm broth to Siberia.

2 Comments

January 19, 2016 · 9:08 pm

A Life Well Lived, Part II

This second tribute to my father was written by my son Daniel, who gave me permission to post it here.

~~~ ~~~ ~~~

My dear Grandpa Gerry died yesterday at 91, at home near Seattle with Grandma Ann and three of my aunts by his side. He had a sharp and curious mind undimmed by age, and a kind and sympathetic ear despite his deafness. He enjoyed many years of good health, and I particularly remember his smile after he kept pace with my father during a long walk up a sand dune, in his late 70s.

Grandpa was born and raised in Washington, DC at a time when slabs of ice were delivered in horse-drawn carts, and kids could freely roam the White House grounds and all the embassies, sneak up into the Capitol dome, and surreptitiously feed bubblegum to monkeys through the bars at the National Zoo. I hope the statute of limitations on that particular incident has run out.

As a cryptographer in WW2, Grandpa encoded messages with geared machines weighing hundreds of pounds, surrounded by walls lined with dynamite, yet he also lived long enough to get the hang of touchscreens, to print out this XKCD cartoon and tape it to the side of his iMac, and most importantly to Skype with his great-grandchildren. He got a DNA profile done, and seemed kinda bummed to find out that he was probably not descended from Genghis Khan. In his career as a sociologist he studied religion and technology and critiqued totalitarian governments (topics as important as ever today), wrote several books, and figured out how to edit his own Wikipedia page. I remember more than once in recent years when I stayed up late talking about my life and work at Intel with Grandpa, only to find that he had woken up before me the next morning, brimming with new questions and ideas.

He was an old dog still learning new tricks. On October 30 we went to his favorite restaurant. I drove, but Grandpa pointed out all the shortcuts in the dark. When the waitress came by to take our drink orders, I expected he’d get his usual deer-in-the-headlights look and blurt out “Bud Light,” at which point I’d protest and order him something more interesting. But this time was different. Without missing a beat, Grandpa set down his menu, asked for a Mac and Jack Amber Ale, and turned to me silently with a twinkle in his eye.

~~~ ~~~ ~~~

My son Daniel, me, and my father Gerry in 2012

My son Daniel, me, and my father Gerry in 2012

1 Comment

Filed under Uncategorized

A Life Well Lived

My father died peacefully at his home near Seattle this morning, before dawn, at 91 years of age. Gerhard Emmanuel Lenski, Jr. was born (1924) and raised in Washington, DC. His father went by Gerhard, and my father went by “Gerry” (pronounced like Gary) his whole life. My father did his undergraduate and graduate studies at Yale University, with his undergraduate years interrupted by three years of service with the US Army Air Forces during World War II, most of which was spent in England as a cryptographer at a joint USAAF-RAF airbase.

After receiving his Ph.D. in 1950, my father joined the Department of Sociology at the University of Michigan, where he rose through the faculty ranks. In 1963, he moved to the University of North Carolina, where he was Alumni Distinguished Professor and served as department chair for several years. He retired in 1992. He wrote several important books including “The Religious Factor: A Sociological Study of Religion’s Impact on Politics, Economics, and Family Life” (1961), “Power and Privilege: A Theory of Social Stratification” (1966), “Ecological-Evolutionary Theory: Principles and Applications” (2005), and “Human Societies: An Introduction to Macrosociology” (1970), now in its 12th edition (2014). He served as vice president of the American Sociological Association, and as president of the Southern Sociological Society. His honors included a Guggenheim Fellowship, election to the American Academy of Arts and Sciences, and a Career of Distinguished Scholarship Award from the American Sociological Association.

In 1948, my father married my mother, the former Jean Cappelmann, a poet, and they had 4 children. They were active together in working for civil rights and against the Vietnam War. They were married for 45 years before my mother passed away in 1994. In 1996, my father married the former Ann Blalock, who was a close family friend and whose late husband Hubert “Tad” Blalock, had been a colleague of my father’s at both the University of Michigan and the University of North Carolina.

After moving to the Seattle area, my father enjoyed visiting northwest sites and cities including the Olympic National Park, Mount Baker, Portland (where my son lives), and Victoria; cheering on the Seahawks and Mariners; watching the ships on the Puget Sound; and talking with his children and grandchildren, always full of questions and ideas about technology and life.

My father was beloved by family and friends for his storytelling and humor – who can forget the story about the time he and a childhood friend gave their chewing gum to monkeys at the National Zoo? – as well as his deep knowledge of and appreciation for human history.

My father was fortunate to have lived a good and full life for 91 years, and I was very lucky to have him for almost six decades. I was also lucky to spend Thanksgiving with him, and we had the chance to share many stories that spanned his life—from baseball trivia to meeting his newest great-grandson in my father’s first-ever Skype.

Dad and Me on Dad's 90th

My father and me on his 90th birthday

ADDITION 1: Click here for a picture of my father from his days at UNC.

ADDITION 2: My son Daniel wrote a wonderful tribute to his Grandpa here.

29 Comments

Filed under Uncategorized

Representing Science to My Representative

My research is funded by the National Science Foundation, including the BEACON Center for the Study of Evolution in Action. BEACON is one of a dozen or so NSF Science and Technology Centers. Today, our Representative in the US Congress, Mike Bishop, came to BEACON for 40 minutes to discuss our center—what we do, what impacts our work has, and so forth.

It was something of a “fire hose” for Mr. Bishop, with several presenters trying to convey a lot of information very quickly.  However, he was engaged and asked thoughtful questions.  I think he left with an understanding of the importance of scientific and engineering research, including how fundamental curiosity-driven research can lead to applications.

I had 10 minutes to show him my lab and explain what we do and why.  When I make a short presentation like this one, I often write out a version in advance.  I don’t read it or memorize it by any means. However, writing it out helps get my thoughts in order—removing details that aren’t important, ordering ideas into a narrative, reminding me of what I most want to convey.

I’m sure I was not as clear or coherent as the text that follows.  I offer it here because it conveys the points I tried to make in the few minutes that I had as a representative of science speaking with a representative of the people.

~~~~~~~~~~~

I want to show you one of the experiments in my lab.  We call it the long-term evolution experiment. It’s an unusual experiment because it’s been running for over 27 years.  And we keep it going because it’s been a scientific goldmine leading to new discoveries about how bacteria change over time.

It’s important that we understand bacteria and how they evolve for many reasons. Bacteria are best known because some of them can cause dangerous infections. But many of them protect us against infections—if our guts were not filled with harmless bacteria, then the dangerous ones would have a much easier time getting established in our bodies. Some bacteria also provide nitrogen to plants and perform other essential functions in the environment, including degrading some of the wastes that we produce.  And some bacteria are the workhorses of biotechnology.

To give one example of why bacterial evolution is so important:  If bacteria didn’t evolve, we would have defeated nearly all the pathogenic bacteria on Earth with antibiotics.  But they do evolve and become resistant to our drugs, and so the pharmaceutical industry has to spend billions of dollars trying to keep up with the evolving bacteria and viruses by developing new drugs to treat infections.

It’s possible to see evolution-in-action in bacteria, like we do here, for several reasons.

  • Their populations are huge.  The number of bacteria in just one of these little flasks is comparable to number of people in the United States.
  • They grow really fast.  Every day, there are about 7 generations of bacteria in each of the flasks.  So each day we see the great-great-great-great-great grandkids, so to speak, of the bacteria that were in our flasks yesterday. After 27 years, the experiment has run for over 63,000 generations.
  • And one more important thing about bacteria. We can freeze them and bring them back to life, and so we’ve got a frozen fossil record of the experiment.

When I started the experiment in 1988, there was no human genome project, and not even a single bacterial genome had been sequenced.  Now we go into our freezers and sequence the bacterial genomes to see how their DNA is changing over time.

The work we’ve done in this curiosity-driven experiment has inspired others who are using similar ideas and approaches to understand the rates and mechanisms of how bacteria evolve.

I’ll give two quick examples that show how our NSF-supported fundamental science gets translated into applications that are important for security and health.

First, you remember the anthrax letter attacks on Congress that occurred right after the 9/11 attacks. In the first few days after the anthrax attacks, I was contacted by the Defense Threat Reduction Agency for advice on how to identify the source of the strain used in that bioterrorism, and how to distinguish it from other related strains. And in the months that followed, I was asked for and provided advice to the FBI and other agencies investigating the attacks. Tracking the source of microbes in outbreaks—whether natural or terroristic in origin—requires understanding how they change over time.

Second, my colleague Prof. Martha Mulks studies bacteria that colonize the lungs of people with cystic fibrosis (CF).  There are about 30,000 people with this disease in the US alone.  It’s an inherited disease that makes people susceptible to lung infections and, unfortunately, those infections kill many kids and young adults with CF.  Some of the bacteria that infect the diseased lungs are not pathogens to most of us—they’re bacteria that live in soil and on plants, but when they get into the lungs of CF patients they evolve and adapt to that new environment. They also evolve resistance to the antibiotics that are meant to get rid of them. How exactly the various bacteria change to become better adapted to the CF lung environment is not known. Luckily, though, Martha Mulks and other foresighted scientists and clinicians have kept frozen samples of these bacteria over the years—just like we’ve done with the long-term experiment I described a moment ago. Now the BEACON Center is supporting work by a graduate student, Elizabeth Baird, who will analyze the DNA from old and new samples and apply some of the same approaches and methods that we’ve used and developed for the laboratory experiment to see how the bacteria have changed—how they have become resistant to antibiotics and otherwise adapted to the environment of the lungs of people who suffer from cystic fibrosis.

The bottom line is that the fundamental, curiosity-driven research that the National Science Foundation supports is also an engine for future applications—often ones that we may not even have dreamed of—as well as a training ground for the talented and dedicated young people who you can see working all around us in this lab and throughout the BEACON Center.

~~~~~~~~~~~

Rep. Mike Bishop (MI-08) and me in the lab.  [Photo: Danielle Whitaker, MSU.]

Rep Mike Bishop and me in lab, 14 Oct 2015

1 Comment

Filed under Education, Science