Tag Archives: NSF

Representing Science to My Representative

My research is funded by the National Science Foundation, including the BEACON Center for the Study of Evolution in Action. BEACON is one of a dozen or so NSF Science and Technology Centers. Today, our Representative in the US Congress, Mike Bishop, came to BEACON for 40 minutes to discuss our center—what we do, what impacts our work has, and so forth.

It was something of a “fire hose” for Mr. Bishop, with several presenters trying to convey a lot of information very quickly.  However, he was engaged and asked thoughtful questions.  I think he left with an understanding of the importance of scientific and engineering research, including how fundamental curiosity-driven research can lead to applications.

I had 10 minutes to show him my lab and explain what we do and why.  When I make a short presentation like this one, I often write out a version in advance.  I don’t read it or memorize it by any means. However, writing it out helps get my thoughts in order—removing details that aren’t important, ordering ideas into a narrative, reminding me of what I most want to convey.

I’m sure I was not as clear or coherent as the text that follows.  I offer it here because it conveys the points I tried to make in the few minutes that I had as a representative of science speaking with a representative of the people.


I want to show you one of the experiments in my lab.  We call it the long-term evolution experiment. It’s an unusual experiment because it’s been running for over 27 years.  And we keep it going because it’s been a scientific goldmine leading to new discoveries about how bacteria change over time.

It’s important that we understand bacteria and how they evolve for many reasons. Bacteria are best known because some of them can cause dangerous infections. But many of them protect us against infections—if our guts were not filled with harmless bacteria, then the dangerous ones would have a much easier time getting established in our bodies. Some bacteria also provide nitrogen to plants and perform other essential functions in the environment, including degrading some of the wastes that we produce.  And some bacteria are the workhorses of biotechnology.

To give one example of why bacterial evolution is so important:  If bacteria didn’t evolve, we would have defeated nearly all the pathogenic bacteria on Earth with antibiotics.  But they do evolve and become resistant to our drugs, and so the pharmaceutical industry has to spend billions of dollars trying to keep up with the evolving bacteria and viruses by developing new drugs to treat infections.

It’s possible to see evolution-in-action in bacteria, like we do here, for several reasons.

  • Their populations are huge.  The number of bacteria in just one of these little flasks is comparable to number of people in the United States.
  • They grow really fast.  Every day, there are about 7 generations of bacteria in each of the flasks.  So each day we see the great-great-great-great-great grandkids, so to speak, of the bacteria that were in our flasks yesterday. After 27 years, the experiment has run for over 63,000 generations.
  • And one more important thing about bacteria. We can freeze them and bring them back to life, and so we’ve got a frozen fossil record of the experiment.

When I started the experiment in 1988, there was no human genome project, and not even a single bacterial genome had been sequenced.  Now we go into our freezers and sequence the bacterial genomes to see how their DNA is changing over time.

The work we’ve done in this curiosity-driven experiment has inspired others who are using similar ideas and approaches to understand the rates and mechanisms of how bacteria evolve.

I’ll give two quick examples that show how our NSF-supported fundamental science gets translated into applications that are important for security and health.

First, you remember the anthrax letter attacks on Congress that occurred right after the 9/11 attacks. In the first few days after the anthrax attacks, I was contacted by the Defense Threat Reduction Agency for advice on how to identify the source of the strain used in that bioterrorism, and how to distinguish it from other related strains. And in the months that followed, I was asked for and provided advice to the FBI and other agencies investigating the attacks. Tracking the source of microbes in outbreaks—whether natural or terroristic in origin—requires understanding how they change over time.

Second, my colleague Prof. Martha Mulks studies bacteria that colonize the lungs of people with cystic fibrosis (CF).  There are about 30,000 people with this disease in the US alone.  It’s an inherited disease that makes people susceptible to lung infections and, unfortunately, those infections kill many kids and young adults with CF.  Some of the bacteria that infect the diseased lungs are not pathogens to most of us—they’re bacteria that live in soil and on plants, but when they get into the lungs of CF patients they evolve and adapt to that new environment. They also evolve resistance to the antibiotics that are meant to get rid of them. How exactly the various bacteria change to become better adapted to the CF lung environment is not known. Luckily, though, Martha Mulks and other foresighted scientists and clinicians have kept frozen samples of these bacteria over the years—just like we’ve done with the long-term experiment I described a moment ago. Now the BEACON Center is supporting work by a graduate student, Elizabeth Baird, who will analyze the DNA from old and new samples and apply some of the same approaches and methods that we’ve used and developed for the laboratory experiment to see how the bacteria have changed—how they have become resistant to antibiotics and otherwise adapted to the environment of the lungs of people who suffer from cystic fibrosis.

The bottom line is that the fundamental, curiosity-driven research that the National Science Foundation supports is also an engine for future applications—often ones that we may not even have dreamed of—as well as a training ground for the talented and dedicated young people who you can see working all around us in this lab and throughout the BEACON Center.


Rep. Mike Bishop (MI-08) and me in the lab.  [Photo: Danielle Whitaker, MSU.]

Rep Mike Bishop and me in lab, 14 Oct 2015

1 Comment

Filed under Education, Science

Funding the LTEE—past, present, and future: Questions from Jeremy Fox about the LTEE, part 4

EDIT (23 June 2015): PLOS Biology has published a condensed version of this blog-conversation.

This is the 4th installment in my responses to Jeremy Fox’s questions about the long-term evolution experiment (LTEE) with E. coli. This response addresses his 5th and 6th questions, which are copied below.


  • How have you maintained funding for the LTEE over the years, and how hard has it been? The difficulty of sustaining funding for long term work is a common complaint in ecology, and I’m guessing in evolution as well. And of course, if people think that they won’t be able to sustain funding for a long-term project, they’re less likely to start one in the first place. At best, they’ll try to do it by piggybacking short-term studies (or short-term rationales) on the long-term work, so that the long-term work can be sustained via a series of short-term grants. When you first proposed the LTEE to NSF or whoever, presumably you didn’t say “I propose to set up 12 replicate lines of bacteria, keep them going for decades, and see what happens”. And when you went back for your first (or second, or third…) renewal, presumably you still didn’t say “a bunch of cool stuff has happened already, so please give me more money to keep it going, just to see if anything else cool happens.”
  • Related to the previous question: Has it become easier to get funding to keep it going as you’ve gone along? Has it gotten to the point where the experiment (and you?) is widely seen as an “institution”? So that rather than needing to justify it anew every few years, people are basically eager to hand you money to keep it going, no questions asked?


Past.  All in all, I’ve been very fortunate with funding for my research. My first attempt to get the LTEE funded was rejected, but around that time I received a Presidential Young Investigator Award from the National Science Foundation (NSF) that gave me considerable freedom to pursue the research directions that most interested me. Various grants have supported the LTEE since then including, for the past 10 years, an NSF LTREB grant (LTREB stands for long-term research in environmental biology).  LTREB grants are very small, but mine provides core support to keep the lines going.  Other funds are required to do anything more than some basic quality control and assays. My professorship at MSU—named after John Hannah, who was president of MSU for 28 years, about the duration of the LTEE!—has provided discretionary funds that have been invaluable, allowing us to explore new scientific directions and techniques as they become interesting and available, without requiring us to first secure funding. And the graduate students and postdocs in my group have been very talented, and they’ve often been awarded fellowships that fund the essential brain-power and hard work that has made the LTEE so successful.

Present.  I take proposal writing very seriously, always emphasizing both the overarching questions that have been with the LTEE since it began and the specific aims that arise from new discoveries and technical advances. One always has to make the case for why a particular project, individual, or team merits support. So I wouldn’t say it has gotten easier to get funding, especially given the decline in funding rates. But I do sense that reviewers have, on balance, become increasingly excited by the LTEE project over the years, as it has borne a lot of fruit. In fact, the NSF program officer has told me that the LTREB grant will be funded again for the next 5 years. During the pre-proposal phase (yes, a pre-proposal was required for a project that has run for over a quarter century!), the panel summary called the LTEE “this community’s Hubble Telescope.” Now that was certainly gratifying!

Future.  The big challenge going forward will be to secure funds that will allow the LTEE to continue after I’m gone. Many colleagues have told me that the LTEE must continue, and I agree. (I’m not planning on retiring anytime soon, but I think it’s wise to hand off a project sooner rather than wait to the last hour.) I like to call the LTEE the experiment that keeps on giving, so the challenge is to find a way to make that happen.

I realize that not every scientist will have the same good fortune that I’ve had. Indeed, by continuing “someone else’s experiment” a young scientist might even be viewed by some as unoriginal and thus unworthy of the privileges of tenure and funding. To overcome that stigma, I’d like to secure funds to ensure that, not only can the LTEE continue, but that its continuation is rewarding rather than burdensome to future scientists. After all, it comes with its own inherent challenges—including the fact that the populations are tended every day as well as management of the ever-growing collection of frozen samples.

My thinking is that each successive scientist responsible for the LTEE would, ideally, be young enough that he or she could direct the project for 25 years or so, but senior enough to have been promoted and tenured based on his or her independent achievements in a relevant field (evolutionary biology, genomics, microbiology, etc.). Thus, the LTEE would likely continue in parallel with that person’s other research, rather than requiring his or her full effort, just like my team has conducted other research in addition to the LTEE. The goal, then, is to provide the future project leaders with the benefits of continuing the LTEE while relieving them of the most onerous burdens.

So as I’ve said before, “If you know anyone who would like to endow a million-year experiment, have them get in touch with me.”

[This picture shows the Hubble Space Telescope. It was taken on a servicing mission in 1997, and it comes from the NASA website.]

Hubble Telescope


Filed under Science